Nowhere zero 4-flow in regular matroids

نویسندگان

  • Hong-Jian Lai
  • Xiangwen Li
  • Hoifung Poon
چکیده

Jensen and Toft [10] conjectured that every 2-edge-connected graph without a K5minor has a nowhere zero 4-flow. Walton and Welsh [24] proved that if a coloopless regular matroid M does not have a minor in {M(K3,3),M(K5)}, then M admits a nowhere zero 4-flow. In this note, we prove that if a coloopless regular matroid M does not have a minor in {M(K5),M(K5)}, then M admits a nowhere zero 4-flow. Our result implies the Jensen and Toft conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nowhere-zero Flows in Regular Matroids and Hadwiger’s Conjecture

We present a tool that shows, that the existence of a k-nowhere-zero-flow is compatible with 1-,2and 3-sums in regular matroids. As application we present a conjecture for regular matroids that is equivalent to Hadwiger’s conjecture for graphs and Tuttes’s 4and 5-flow conjectures.

متن کامل

On (k, d)-colorings and fractional nowhere-zero flows

The concepts of (k, d)-coloring and the star chromatic number, studied by Vince, by Bondy and Hell, and by Zhu are shown to reflect the cographic instance of a wider concept, that of fractional nowhere-zero flows in regular matroids. c © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 155–161, 1998

متن کامل

Regularity of the Circuit Lattice of Oriented Matroids

For the signed circuits of a regular oriented matroid (and more particular of a digraph) the above questions have been studied very well in past. From graph theory it is known that the dimension of the circuit space of a connected digraph is |E| − |V | + 1, that the circuit space L(C) is regular and that the elementary circuits {C(B, e)}e∈E\B form a basis of L(C) for any basis B of O. For gener...

متن کامل

On ( k ; d ) - Colorings and Fractional Nowhere

The concepts of (k; d)-coloring and the star chromatic number, studied by Vince, by Bondy and Hell, and by Zhu are shown to reeect the cographic instance of a wider concept, that of fractional nowhere-zero ows in regular matroids.

متن کامل

Cubic Graphs without a Petersen Minor Have Nowhere–zero 5–flows

We show that every bridgeless cubic graph without a Petersen minor has a nowhere-zero 5-flow. This approximates the known 4-flow conjecture of Tutte. A graph has a nowhere-zero k-flow if its edges can be oriented and assigned nonzero elements of the group Zk so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph. An equivalent definition we get...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2005